Hopf orders in $\left(K C_{p}^{3}\right)^{*}$ over a discrete valuation ring of characteristic p

Robert G. Underwood
Department of Mathematics and Computer Science
Auburn University at Montgomery
Montgomery, Alabama

March 2, 2019

1. Introduction

Let p be prime, let R be a discrete valuation ring of characteristic p and quotient field K, with uniformizing parameter π and valuation $\nu_{K}: K \rightarrow \mathbb{Z}$. Let C_{p}^{n} denote the elementary abelian group of order p^{n}. Let $K C_{p}^{n}$ be the group ring Hopf algebra with dual Hopf algebra $\left(K C_{p}^{n}\right)^{*}$.

This talk concerns the structure of R-Hopf orders in $\left(K C_{p}^{n}\right)^{*}$ for $n \geq 1$. The cases $n=1,2$ are known; complete classifications have been given by J. Tate and F. Oort in the case $n=1$, and G. Elder and U . in the case $n=2$. For $n=1$, one parameter is required to determine the Hopf order, and for $n=2$ we require three parameters.

For arbitrary n, A. Koch has recently shown that Hopf orders in $\left(K C_{p}^{n}\right)^{*}$ are completely classified using $n(n+1) / 2$ parameters.

What remains unsettled is the explicit structure of the Hopf orders in $\left(K C_{p}^{n}\right)^{*}$ (and their duals in $\left.K C_{p}^{n}\right)$.

Towards this end, we determine the algebraic structure of all Hopf orders in $\left(K C_{p}^{3}\right)^{*}$ and conjecture about the structure of their duals in $K C_{p}^{3}$.

We begin with a review of the $n=1,2$ cases.
2. Hopf orders in $\left(K C_{p}\right)^{*}$

Let σ generate C_{p}. Then it is well-known that the group ring $K C_{p}$ is a K-Hopf algebra. Let $i \geq 0$ be an integer and let

$$
\mathcal{H}_{i}=R\left[\frac{\sigma-1}{\pi^{i}}\right] .
$$

Since $(\sigma-1)^{p}=0$ in $K C_{p}$, it is easy to see that \mathcal{H}_{i} is both closed under multiplication and a free R-module of rank p. Since $R C_{p} \subseteq \mathcal{H}_{i}$, we clearly have $K \mathcal{H}_{i}=K C_{p}$.

Comultiplication on σ is grouplike, therefore, letting $x=(\sigma-1) / \pi^{i}$ we have

$$
\Delta(x)=x \otimes 1+1 \otimes x+\pi^{i} x \otimes x \in \mathcal{H}_{i} \otimes \mathcal{H}_{i}
$$

As a result, \mathcal{H}_{i} is a Hopf order in $K C_{p}$.

Let $\left(K C_{p}\right)^{*}$ be the linear dual of $K C_{p}$, and let $\left\{e_{i}\right\}_{i \in \mathbb{F}_{p}}$ be the K-basis for $K C_{p}^{*}$ which is dual to the basis $\left\{\sigma^{j}\right\}_{j \in \mathbb{F}_{p}}$ for $K C_{p}$. We have $\left\langle e_{i}, \sigma^{j}\right\rangle=\delta_{i, j}$, the Kronecker delta function.

It is well-known that $\left(K C_{p}\right)^{*}$ is a K-Hopf algebra. Multiplication in $\left(K C_{p}\right)^{*}$ is determined by $e_{i} e_{j}=\delta_{i, j}$. Thus $\left\{e_{i}\right\}_{i \in \mathbb{F}_{p}}$ is an orthonormal basis, and $e_{0}+e_{1}+\cdots+e_{p-1}$ is the multiplicative identity. The counit is determined by $\varepsilon\left(e_{i}\right)=\delta_{i, 0}$, comultiplication is determined by $\Delta\left(e_{i}\right)=\sum_{j \in \mathbb{F}_{p}} e_{j} \otimes e_{i-j}$, and the antipode satisfies $S\left(e_{i}\right)=e_{-i}$.

Lemma 2.1. Let $\xi_{1}=\sum_{r=1}^{p-1} r e_{r} \in\left(K C_{p}\right)^{*}$. Then $\left\langle\xi_{1},(\sigma-1)^{j}\right\rangle=\delta_{1, j}$ and $\left(R C_{p}\right)^{*}$ is an R-Hopf algebra with $\left(R C_{p}\right)^{*}=R\left[\xi_{1}\right]$ where $\xi_{1}^{p}=\xi_{1}$. The counit map satisfies $\varepsilon\left(\xi_{1}\right)=0$, comultiplication is given as $\Delta\left(\xi_{1}\right)=\xi_{1} \otimes 1+1 \otimes \xi_{1}$, namely ξ_{1} is primitive, and the antipode satisfies $S\left(\xi_{1}\right)=-\xi_{1}$.

Proposition 2.2. Let $i \geq 0$ be an integer and let $\beta=\pi^{i} \xi_{1}$. Then $R[\beta]$ is an R-Hopf algebra contained in $\left(R C_{p}\right)^{*}$ with $\beta^{p}=\pi^{(p-1) i} \beta$; its coalgebra structure is defined by counit $\varepsilon(\beta)=0$, comultiplication $\Delta(\beta)=\beta \otimes 1+1 \otimes \beta$, and antipode $S(\beta)=-\beta$. We have $R[\beta]=\mathcal{H}_{i}^{*}$.

Theorem 2.3. [Tate-Oort] Every Hopf order in $\left(K C_{p}\right)^{*}$ can be written as $R[\beta]=R\left[\pi^{i} \xi_{i}\right]$ for some $i \geq 0$.

Corollary 2.4. Every Hopf order in $K C_{p}$ can be written as \mathcal{H}_{i} for some $i \geq 0$.

3. Hopf orders in $\left(K C_{p}^{2}\right)^{*}$

Let $C_{p}^{2}=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$. Then $\left\{\sigma_{1}^{a} \sigma_{2}^{b}\right\}_{a, b \in \mathbb{F}_{p}}$ is a basis for $K C_{p}^{2}$, with dual basis $\left\{e_{a, b}\right\}_{a, b \in \mathbb{F}_{p}}$ for $\left(K C_{p}^{2}\right)^{*}$ satisfying $\left\langle e_{a, b}, \sigma_{1}^{c} \sigma_{2}^{d}\right\rangle=\delta_{a, c} \delta_{b, d}$.

The dual $\left(K C_{p}^{2}\right)^{*}$ is a K-Hopf algebra. Multiplication in $\left(K C_{p}^{2}\right)^{*}$ is given by $e_{a, b} e_{c, d}=\delta_{a, c} \delta_{b, d} e_{c, d}$, hence $\left\{e_{a, b}\right\}_{a, b \in \mathbb{F}_{p}}$ is an orthonormal basis with $\sum_{a, b \in \mathbb{F}_{p}} e_{a, b}=1 \in\left(K C_{p}^{2}\right)^{*}$.

The counit map is determined by $\varepsilon\left(e_{a, b}\right)=\delta_{a, 0} \delta_{b, 0}$, comultiplication is determined by $\Delta\left(e_{a, b}\right)=\sum_{i, j \in \mathbb{F}_{p}} e_{i, j} \otimes e_{a-i, b-j}$, and the antipode satisfies $S\left(e_{a, b}\right)=e_{-a,-b}$.

We identify $\left(K C_{p}^{2}\right)^{*}$ with $\left(K C_{p}\right)^{*} \otimes\left(K C_{p}\right)^{*}, e_{a, b} \mapsto e_{a} \otimes e_{b}$.

Lemma 3.1. Let $\xi_{1,0}=\xi_{1} \otimes 1$ and $\xi_{0,1}=1 \otimes \xi_{1} \in\left(K C_{p}^{2}\right)^{*}$. Then

$$
\begin{gathered}
\left\langle\xi_{1,0},\left(\sigma_{1}-1\right)^{j}\left(\sigma_{2}-1\right)^{k}\right\rangle=\delta_{1, j} \delta_{0, k}, \\
\left\langle\xi_{0,1},\left(\sigma_{1}-1\right)^{j}\left(\sigma_{2}-1\right)^{k}\right\rangle=\delta_{0, j} \delta_{1, k},
\end{gathered}
$$

and $\left(R C_{p}^{2}\right)^{*}$ is an R-Hopf algebra with $\left(R C_{p}^{2}\right)^{*}=R\left[\xi_{1,0}, \xi_{0,1}\right]$ where $\xi_{1,0}$ and $\xi_{0,1}$ satisfy $x^{p}=x$. On these generators, the counit satisfies $\varepsilon(x)=0$, comultiplication is $\Delta(x)=x \otimes 1+1 \otimes x$, and the antipode satisfies $S(x)=-x$.

Define $\wp(x)=x^{p}-x$.

Proposition 3.2. Given integers $i_{1}, i_{2} \geq 0$ and $\mu \in K$, let $\beta_{1}=\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right)$ and $\beta_{2}=\pi^{i_{2}} \xi_{0,1}$.
(i) If $v_{K}(\wp(\mu)) \geq i_{2}-p i_{1}$, then

$$
R\left[\beta_{1}, \beta_{2}\right]=R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right]
$$

is an R-Hopf order in $\left(R C_{p}^{2}\right)^{*}$. The algebra structure of $R\left[\beta_{1}, \beta_{2}\right]$ is determined by the equations

$$
\beta_{1}^{p}=\pi^{(p-1) i_{1}} \beta_{1}-\pi^{p i_{1}-i_{2}} \wp(\mu) \beta_{2},
$$

and

$$
\beta_{2}^{p}=\pi^{(p-1) i_{2}} \beta_{2} .
$$

The coalgebra structure of $R\left[\beta_{1}, \beta_{2}\right]$ is determined on the generators, $\beta_{r}, r=1,2$, by counit $\varepsilon\left(\beta_{r}\right)=0$, comultiplication $\Delta\left(\beta_{r}\right)=\beta_{r} \otimes 1+1 \otimes \beta_{r}$, and antipode $S\left(\beta_{r}\right)=-\beta_{r}$. In particular, the generators β_{1}, β_{2} are primitive.
(ii) Let $\beta_{1}^{\prime}=\pi^{i_{1}}\left(\xi_{1,0}-\mu^{\prime} \xi_{0,1}\right)$ for some $\mu^{\prime} \in K$ satisfying $v_{K}\left(\wp\left(\mu^{\prime}\right)\right) \geq i_{2}-p i_{1}$. Then $R\left[\beta_{1}^{\prime}, \beta_{2}\right]$ is a Hopf algebra, and $R\left[\beta_{1}^{\prime}, \beta_{2}\right]=R\left[\beta_{1}, \beta_{2}\right]$ if and only if $v_{K}\left(\mu^{\prime}-\mu\right) \geq i_{2}-i_{1}$.

On the dual side, we have
Proposition 3.3. Let $i_{1}, i_{2} \geq 0, \mu \in K, \sigma_{1}^{[\mu]}=\sum_{i=0}^{p-1}\binom{\mu}{i}\left(\sigma_{1}-1\right)^{i}$, and let

$$
\mathcal{H}_{i_{1}, i_{2}, \mu}=R\left[\frac{\sigma_{1}-1}{\pi^{i_{1}}}, \frac{\sigma_{2} \sigma_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] .
$$

If $\nu_{K}(\wp(\mu)) \geq i_{2}-p i_{1}$, then $\mathcal{H}_{i_{1}, i_{2}, \mu}$ is a Hopf order in $K C_{p}^{2}$.
Theorem 3.4. Let $\mathcal{H}_{i_{1}, i_{2}, \mu}$ be as in Proposition 3.3, then

$$
\mathcal{H}_{i_{1}, i_{2}, \mu}^{*}=R\left[\beta_{1}, \beta_{2}\right]=R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right] .
$$

We now show that every Hopf order in $\left(K C_{p}^{2}\right)^{*}$ is of the form

$$
R\left[\beta_{1}, \beta_{2}\right]=R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right]
$$

Recall $C_{p}^{2}=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$, and let \mathcal{H} be an R-Hopf order in $K C_{p}^{2}$. Let $C_{p}^{2} \rightarrow C_{p}^{2} /\left\langle\sigma_{1}\right\rangle$ denote the canonical surjection with
$C_{p}^{2} /\left\langle\sigma_{1}\right\rangle \cong\left\langle\bar{\sigma}_{2}\right\rangle$ where $\bar{\sigma}_{2}=\sigma_{2}\left\langle\sigma_{1}\right\rangle$. There exists a short exact sequence

$$
\begin{equation*}
R \rightarrow \mathcal{H}_{i_{1}} \rightarrow \mathcal{H} \rightarrow \mathcal{H}_{i_{2}} \rightarrow R \tag{1}
\end{equation*}
$$

where $\mathcal{H}_{i_{1}}=R\left[\left(\sigma_{1}-1\right) / \pi^{i_{1}}\right]$ and $\mathcal{H}_{i_{2}}=R\left[\left(\bar{\sigma}_{2}-1\right) / \pi^{i_{2}}\right]$, for some $i_{1}, i_{2} \geq 0$.
We dualize (1) to obtain the short exact sequence

$$
\begin{equation*}
R \rightarrow \mathcal{H}_{i_{2}}^{*} \rightarrow \mathcal{H}^{*} \rightarrow \mathcal{H}_{i_{1}}^{*} \rightarrow R \tag{2}
\end{equation*}
$$

We next translate into the language of group schemes. Let

$$
\mathbb{D}_{i_{1}}^{*}=\operatorname{Spec} \mathcal{H}_{i_{1}}^{*}, \quad \mathbb{D}^{*}=\operatorname{Spec} \mathcal{H}^{*}, \text { and } \mathbb{D}_{i_{2}}^{*}=\operatorname{Spec} \mathcal{H}_{i_{2}}^{*} .
$$

Classifying all Hopf orders \mathcal{H} in (1), or \mathcal{H}^{*} in (2), is the same as classifying all finite group schemes \mathbb{D}^{*} that fit into the short exact sequence of group schemes

$$
\begin{equation*}
0 \rightarrow \mathbb{D}_{i_{1}}^{*} \rightarrow \mathbb{D}^{*} \rightarrow \mathbb{D}_{i_{2}}^{*} \rightarrow 0 \tag{3}
\end{equation*}
$$

and which are represented by an R-Hopf order in $\left(K C_{p}^{2}\right)^{*}$. In other words, we compute the subgroup $\operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$ of generically trivial extensions within the full extension group $\operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$.

To this end, observe that the polynomial ring $R[x]$ with counit $\varepsilon(x)=0$, comultiplication $\Delta(x)=x \otimes 1+1 \otimes x$ and antipode $S(x)=-x$ represents the additive group scheme \mathbb{G}_{a}.

For $i_{1} \geq 0$, the R-algebra map $\psi: R[x] \rightarrow R[x]$ determined by $\psi(x)=x^{p}-\pi^{(p-1) i_{1}} x$ is a homomorphism of Hopf algebras, and so, there exists a homomorphism of R-group schemes

$$
\Psi: \mathbb{G}_{a} \rightarrow \mathbb{G}_{a}
$$

defined by $\Psi(g)(x)=g(\psi(x))$ for $g \in \mathbb{G}_{a}$. The kernel of Ψ is represented by the R-Hopf order $R[x] /(\psi(x)) \cong \mathcal{H}_{i_{1}}^{*}$ in $\left(K C_{p}\right)^{*}$, thus there is a short exeact sequence of group schemes

$$
\begin{equation*}
0 \rightarrow \mathbb{D}_{i_{1}}^{*} \xrightarrow{\iota} \mathbb{G}_{a} \xrightarrow{\Psi} \mathbb{G}_{a} \rightarrow 0 . \tag{4}
\end{equation*}
$$

From (4), we obtain the long exact sequence:
$\operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right) \xrightarrow{\Psi} \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right) \xrightarrow{\omega} \operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right) \xrightarrow{\iota} \operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$, with connecting homomorphism ω, which induces the map ρ in the exact sequence
$0 \rightarrow \operatorname{coker}\left(\Psi: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{\curvearrowleft}\right) \xrightarrow{\rho} \operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right) \xrightarrow{\iota} \operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$.
Tensoring with K and considering kernels, we obtain the exact sequence
$0 \rightarrow \operatorname{coker}\left(\Psi: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{\oslash}\right)_{g t} \xrightarrow{\rho} \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right) \xrightarrow{\iota} \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$.
(5)

Proposition 3.5. There is an isomorphism

$$
\rho: \operatorname{coker}\left(\Psi: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{Ð}\right)_{g t} \rightarrow \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)
$$

Proof. Our plan is to show that $\operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)=0$ in (5). To this end, we use a first quadrant spectral sequence to show that $\operatorname{Ext}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right) \cong H_{0}^{2}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$. With this characterization, we then form the complex of morphisms
$\operatorname{Mor}_{0}\left(\left(\mathbb{D}_{i_{2}}^{*}\right)^{r-1}, \mathbb{X}\right) \xrightarrow{\partial_{r-1}} \operatorname{Mor}_{0}\left(\left(\mathbb{D}_{i_{2}}^{*}\right)^{r}, \mathbb{X}\right) \xrightarrow{\partial_{r}} \operatorname{Mor}_{0}\left(\left(\mathbb{D}_{i_{2}}^{*}\right)^{r+1}, \mathbb{X}\right) \xrightarrow{\partial_{r+1}}$, and compute directly that

$$
\mathrm{H}_{0}^{2}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right) \rightarrow \mathrm{H}_{0}^{2}\left(K \otimes_{R} \mathbb{D}_{i_{2}}^{*}, K \otimes_{R} \mathbb{G}_{a}\right)
$$

is an injection, thus $\mathrm{H}_{0}^{2}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)_{g t} \cong \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)=0$ is trivial.

In order to compute the elements of $\operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$, explicitly, we need to characterize coker $\left(\Psi_{1}: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{\oslash}\right)_{g t}$.

Proposition 3.6. The coker $\left(\Psi_{1}: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{๑}\right)_{g t}$ is isomorphic to the additive subgroup of $K /\left(\mathbb{F}_{p}+P^{i_{2}-i_{1}}\right)$ represented by those elements $\mu \in K$ satisfying $\wp(\mu) \in P^{i_{2}-p i_{1}}$.

Proof. Each element of $\operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$ corresponds to a R-Hopf algebra homomorphism $R[x] \rightarrow \mathcal{H}_{i_{2}}^{*}$, and since x is primitive, elements of $\operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)$ correspond to $\operatorname{Prim}\left(\mathcal{H}_{i_{2}}^{*}\right)$, the primitive elements in $\mathcal{H}_{i_{2}}^{*}$. We have $\mathcal{P}=\operatorname{Prim}\left(\mathcal{H}_{i_{2}}^{*}\right)=R \beta_{2}$ where $\beta_{2}=\pi^{i_{2}} \xi_{0,1}$.

The generically trivial elements in the cokernel $\operatorname{coker}\left(\Psi_{1}: \operatorname{Hom}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{G}_{a}\right)^{\curvearrowleft}\right)$ correspond to elements of

$$
\left(\psi\left(K \otimes_{R} \mathcal{P}\right) \cap \mathcal{P}\right) / \psi(\mathcal{P})
$$

Elements of $K \otimes_{R} \mathcal{P}$ can be expressed as $\mu \pi^{i_{1}} \xi_{0,1}$ for some $\mu \in K$, and an element of $\psi\left(K \otimes_{R} \mathcal{P}\right)$ can be written

$$
\wp(\mu) \pi^{p i_{1}} \xi_{0,1}=\psi\left(\mu \pi^{i_{1}} \xi_{0,1}\right)
$$

An element of $\psi\left(K \otimes_{R} \mathcal{P}\right)$ lies in \mathcal{P} precisely when $\wp(\mu) \in P^{i_{2}-p i_{1}}$. It is zero in the quotient $\left(\psi\left(K \otimes_{R} \mathcal{P}\right) \cap \mathcal{P}\right) / \psi(\mathcal{P})$ precisely when $\mu \in \mathbb{F}_{p}+P^{i_{2}-i_{1}}$.

Theorem 3.7. Each class $[E]$ in $\operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$ corresponds to a short exact sequence

$$
E_{\mu}: 0 \rightarrow \mathbb{D}_{i_{1}}^{*} \longrightarrow \operatorname{Spec} R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right] \longrightarrow \mathbb{D}_{i_{2}}^{*} \rightarrow 0
$$

where $\mu \in K$ represents a coset in $K /\left(\mathbb{F}_{p}+P^{i_{2}-i_{1}}\right)$ that satisfies $\nu_{K}(\wp(\mu)) \geq i_{2}-p i_{1}$.

Proof. Let $[E] \in \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$,

$$
E: 0 \rightarrow \mathbb{D}_{i_{1}}^{*} \longrightarrow \mathbb{D}^{*} \longrightarrow \mathbb{D}_{i_{2}}^{*} \rightarrow 0
$$

By Proposition 3.5, $\rho^{-1}([E])=[h]$ is a class in the cokernel represented by a homomorphism $h: \mathbb{D}_{i_{2}}^{*} \rightarrow \mathbb{G}_{a}$ and is determined by a Hopf algebra map $x \mapsto \wp(\mu) \pi^{p i_{1}} \xi_{0,1}=\wp(\mu) \pi^{p i_{1}} \xi_{0,1}$ for some $\mu \in K$ with $\nu_{K}(\wp(\mu)) \geq i_{2}-p i_{1}$.

We compute the representing Hopf algebra \mathcal{H}_{h}^{*} of $\mathbb{D}_{h}^{*}=\mathbb{D}^{*}$.
Translating to Hopf algebras, we have the push-out diagram

$$
\begin{array}{ccc}
\mathcal{H}_{h}^{*} & \leftarrow & R[x] \\
\uparrow & & \psi \uparrow \\
\mathcal{H}_{i_{2}}^{*} & \stackrel{\alpha}{\leftarrow} & R[x],
\end{array}
$$

with $\alpha(x)=\wp(\mu) \pi^{p_{1}} \xi_{0,1}=\psi\left(\mu \pi^{i_{1}} \xi_{0,1}\right)$. Thus,

$$
\begin{aligned}
\mathcal{H}_{h}^{*} & =\left(R\left[\pi^{i_{2}} \xi_{0,1}\right] \otimes_{R} R[x]\right) /\left(\wp(\mu) \pi^{p i_{1}} \xi_{0,1} \otimes 1+1 \otimes \psi(x)\right) \\
& \cong R\left[\pi^{i_{2}} \xi_{0,1}\right][x] /\left(\psi(x)+\wp(\mu) \pi^{p i_{1}} \xi_{0,1}\right) \\
& =R\left[\pi^{i_{2}} \xi_{0,1}\right][x] /\left(\psi(x)+\psi\left(\mu \pi^{i_{1}} \xi_{0,1}\right)\right) \\
& =R\left[\pi^{i_{2}} \xi_{0,1}\right][x] /\left(\psi\left(x+\mu \pi^{i_{1}} \xi_{0,1}\right)\right) .
\end{aligned}
$$

With $x \mapsto \pi^{i_{1}} \xi_{1,0}$, under $R[x] \rightarrow R[x] / \psi(x) \cong R\left[\pi^{i_{1}} \xi_{1,0}\right]$, one obtains

$$
\mathcal{H}_{h}^{*} \cong R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right]
$$

And as we have seen,

$$
\begin{aligned}
\mathcal{H}_{h} & \cong R\left[\pi^{i_{1}}\left(\xi_{1,0}-\mu \xi_{0,1}\right), \pi^{i_{2}} \xi_{0,1}\right]^{*} \\
& \cong \mathcal{H}_{i_{1}, i_{2}, \mu} \\
& =R\left[\frac{\sigma_{1}-1}{\pi^{i_{1}}}, \frac{\sigma_{2} \sigma_{1}^{[\mu]}-1}{\pi^{i_{2}}}\right] .
\end{aligned}
$$

Thus every R-Hopf order in $K C_{p}^{2}$ is of the form $\mathcal{H}_{i_{1}, i_{2}, \mu}$.

4. Hopf orders in $\left(K C_{p}^{3}\right)^{*}$

How much of the method of the $n=2$ case carries over to $n \geq 3$?
Let $C_{p}^{3}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle, \bar{\sigma}_{2}=\sigma_{2}\left\langle\sigma_{1}\right\rangle, \bar{\sigma}_{3}=\sigma_{3}\left\langle\sigma_{1}\right\rangle$, and let

$$
R \rightarrow R\left[\frac{\sigma_{1}-1}{\pi^{i_{1}}}\right] \rightarrow \mathcal{H} \rightarrow R\left[\frac{\bar{\sigma}_{2}-1}{\pi^{i_{2}}}, \frac{\bar{\sigma}_{3} \bar{\sigma}_{2}^{[\mu]}-1}{\pi^{i_{3}}}\right] \rightarrow R
$$

be a short exact sequence of R-Hopf orders, $\mathcal{H} \subseteq K C_{p}^{3}$, dualizing as

$$
R \rightarrow R\left[\pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right] \rightarrow \mathcal{H}^{*} \rightarrow R\left[\pi^{i_{1}} \xi_{1,0,0}\right] \rightarrow R,
$$

where $\xi_{i, j, k}=\xi_{i} \otimes \xi_{j} \otimes \xi_{k}$.

Applying Spec gives

$$
\begin{equation*}
0 \rightarrow \mathbb{D}_{i_{1}}^{*} \rightarrow \mathbb{D}^{*} \rightarrow \mathbb{D}_{i_{2}, i_{3}, \mu}^{*} \rightarrow 0 \tag{6}
\end{equation*}
$$

where

$$
\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}=\operatorname{Spec} R\left[\pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right]
$$

Note: $\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}$ plays the role of $\mathbb{D}_{i_{2}}^{*}$ in the $n=2$ case.
We want to classify short exact sequences of the form (6). Most of the results in the $n=2$ case extend easily, in fact:

Proposition 4.1. There is an isomorphism

$$
\rho: \operatorname{coker}\left(\Psi: \operatorname{Hom}\left(\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}, \mathbb{G}_{a}\right)^{\curvearrowleft}\right)_{g t} \rightarrow \operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{i}, i_{3}, \mu}^{*}, \mathbb{D}_{i_{1}}^{*}\right)
$$

So it is a matter of computing $\operatorname{coker}\left(\Psi: \operatorname{Hom}\left(\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}, \mathbb{G}_{a}\right)^{\Im}\right)_{g t}$.
To this end, we see that elements of $\operatorname{Hom}\left(\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}, \mathbb{G}_{a}\right)$ correspond to Hopf maps $R[x] \rightarrow R\left[\pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right]$ given as $x \mapsto a$, where $a \in \mathcal{P}=\operatorname{Prim}\left(R\left[\pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right]\right)$.

Ultimately, we need to compute

$$
(\psi(K \otimes \mathcal{P}) \cap \mathcal{P}) / \psi(\mathcal{P})
$$

Now, $K \otimes \mathcal{P}=K \xi_{0,1,0}+K \xi_{0,0,1}$, and elements of $K \otimes \mathcal{P}$ can be written

$$
\omega \pi^{i_{1}} \xi_{0,1,0}+\theta \pi^{i_{1}} \xi_{0,0,1}
$$

for $\omega, \theta \in K$.

Thus an element in $\psi(K \otimes \mathcal{P})$ is

$$
\psi\left(\omega \pi^{i_{1}} \xi_{0,1,0}+\theta \pi^{i_{1}} \xi_{0,0,1}\right)=\wp(\omega) \pi^{p i_{1}} \xi_{0,1,0}+\wp(\theta) \pi^{p i_{1}} \xi_{0,0,1} .
$$

This element is in \mathcal{P} under certain conditions on $\wp(\omega)$ and $\wp(\theta)$; it is in $\psi(\mathcal{P})$ under certain conditions on ω and θ.

We determine these conditions.
Note that $\wp(\omega) \pi^{p i_{1}} \xi_{0,1,0}+\wp(\theta) \pi^{p i_{1}} \xi_{0,0,1} \in \mathcal{P}$ if and only if

$$
\left\langle\wp(\omega) \pi^{p i_{1}} \xi_{0,1,0}+\wp(\theta) \pi^{p_{1}} \xi_{0,0,1}, \mathcal{H}_{i_{2}, i_{3}, \mu}\right\rangle \subseteq R .
$$

Since

$$
\begin{aligned}
\bar{\sigma}_{3} \bar{\sigma}_{2}^{[\mu]}-1= & \left.\left(\bar{\sigma}_{3}-1+1\right)\right)_{2}^{[\mu]}-1 \\
= & \left(\bar{\sigma}_{3}-1\right) \sum_{i=0}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{2}-1\right)^{i}+\sum_{i=1}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{2}-1\right)^{i} \\
= & \left(\bar{\sigma}_{3}-1\right)\left(1+\sum_{i=1}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{2}-1\right)^{i}\right) \\
& \quad+\mu\left(\bar{\sigma}_{2}-1\right)+\sum_{i=2}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{2}-1\right)^{i} \\
= & \left(\bar{\sigma}_{3}-1\right)+\mu\left(\bar{\sigma}_{2}-1\right)+\sum_{i=2}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{2}-1\right)^{i} \\
& \quad+\sum_{i=1}^{p-1}\binom{\mu}{i}\left(\bar{\sigma}_{3}-1\right)\left(\bar{\sigma}_{2}-1\right)^{i},
\end{aligned}
$$

It suffices to show that

$$
\left\langle\wp(\omega) \pi^{p i_{1}} \xi_{0,1,0}+\wp(\theta) \pi^{p i_{1}} \xi_{0,0,1}, \bar{\sigma}_{2}-1\right\rangle \in \pi^{i_{2}} R
$$

and

$$
\left\langle\wp(\omega) \pi^{p i_{1}} \xi_{0,1,0}+\wp(\theta) \pi^{p i_{1}} \xi_{0,0,1},\left(\bar{\sigma}_{3}-1\right)+\mu\left(\bar{\sigma}_{2}-1\right)\right\rangle \in \pi^{i_{3}} R
$$

The first condition is

$$
\nu_{K}(\wp(\omega)) \geq i_{2}-p i_{1}
$$

and the second condition is

$$
\nu(\wp(\theta)+\mu \wp(\omega)) \geq i_{3}-p i_{1} .
$$

Note: if $\nu_{K}(\mu) \leq 0$, then $\nu_{K}(\mu) \geq \frac{i_{3}}{p}-i_{2}$. Thus,

$$
\nu_{K}(\mu \wp(\omega)) \geq \frac{i_{3}}{p}-i_{2}+i_{2}-p i_{1}=\frac{i_{3}}{p}-p i_{1},
$$

and so,

$$
\nu(\wp(\theta)) \geq \frac{i_{3}}{p}-p i_{1} .
$$

Here is the classification result.
Theorem 4.2. Each class $[E]$ in $\operatorname{Ext}_{g t}^{1}\left(\mathbb{D}_{i_{2}, i_{3}, \mu}^{*}, \mathbb{D}_{i_{1}}^{*}\right)$ corresponds to a short exact sequence

$$
E_{\omega, \theta}: 0 \rightarrow \mathbb{D}_{i_{1}}^{*}
$$

$\longrightarrow \operatorname{Spec} R\left[\pi^{i_{1}}\left(\xi_{1,0,0}-\omega \xi_{0,1,0}-\theta \xi_{0,0,1}\right), \pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right]$

$$
\longrightarrow \mathbb{D}_{i_{2}, i_{3}, \mu}^{*} \rightarrow 0
$$

where $\mu, \omega, \theta \in K$ satisfy

$$
\nu_{K}(\wp(\mu)) \geq i_{3}-p i_{2}, \quad \nu(\wp(\omega)) \geq i_{2}-p i_{1}, \quad \nu_{K}(\wp(\theta)) \geq \frac{i_{3}}{p}-p i_{1} .
$$

Finally, we have a conjecture.
Conjecture 4.3. The Hopf order

$$
R\left[\pi^{i_{1}}\left(\xi_{1,0,0}-\omega \xi_{0,1,0}-\theta \xi_{0,0,1}\right), \pi^{i_{2}}\left(\xi_{0,1,0}-\mu \xi_{0,0,1}\right), \pi^{i_{3}} \xi_{0,0,1}\right]
$$

in $\left(K C_{p}^{3}\right)^{*}$ is the linear dual of the Hopf order

$$
R\left[\frac{\sigma_{1}-1}{\pi^{i_{1}}}, \frac{\sigma_{2} \sigma_{1}^{[\omega]}-1}{\pi^{i_{2}}}, \frac{\sigma_{3} \sigma_{1}^{[\theta]}\left(\sigma_{2} \sigma_{1}^{[\omega]}\right)^{[\mu]}-1}{\pi^{i_{3}}}\right]
$$

in $K C_{p}^{3}$.

References

1. Elder, G. G., Underwood, R. G., Finite group scheme extensions, and Hopf orders in $K C_{p}^{2}$ over a characteristic p discrete valuation ring, New York J. Math., 23, (2017), 1-29.
2. Koch, A., Primitively generated Hopf orders in characteristic p,
3. Tate J., and Oort, F., Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1-21.
4. Tossici, D., Models of $\mu_{p^{2}, K}$ over a discrete valuation ring, with an appendix by X. Caruso, J. Algebra, 323 (2010), no. 7, 1908-1957.
