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1. Introduction

Let p be prime, let R be a discrete valuation ring of characteristic
p and quotient field K , with uniformizing parameter π and
valuation νK : K → Z. Let Cn

p denote the elementary abelian
group of order pn. Let KCn

p be the group ring Hopf algebra with
dual Hopf algebra (KCn

p )∗.

This talk concerns the structure of R-Hopf orders in (KCn
p )∗ for

n ≥ 1. The cases n = 1, 2 are known; complete classifications have
been given by J. Tate and F. Oort in the case n = 1, and G. Elder
and U. in the case n = 2. For n = 1, one parameter is required to
determine the Hopf order, and for n = 2 we require three
parameters.



For arbitrary n, A. Koch has recently shown that Hopf orders in
(KCn

p )∗ are completely classified using n(n + 1)/2 parameters.

What remains unsettled is the explicit structure of the Hopf orders
in (KCn

p )∗ (and their duals in KCn
p ).

Towards this end, we determine the algebraic structure of all Hopf
orders in (KC 3

p )∗ and conjecture about the structure of their duals
in KC 3

p .

We begin with a review of the n = 1, 2 cases.



2. Hopf orders in (KCp)
∗

Let σ generate Cp. Then it is well-known that the group ring KCp

is a K -Hopf algebra. Let i ≥ 0 be an integer and let

Hi = R

[
σ − 1

πi

]
.

Since (σ − 1)p = 0 in KCp, it is easy to see that Hi is both closed
under multiplication and a free R-module of rank p. Since
RCp ⊆ Hi , we clearly have KHi = KCp.

Comultiplication on σ is grouplike, therefore, letting
x = (σ − 1)/πi we have

∆(x) = x ⊗ 1 + 1⊗ x + πix ⊗ x ∈ Hi ⊗Hi .

As a result, Hi is a Hopf order in KCp.



Let (KCp)∗ be the linear dual of KCp, and let {ei}i∈Fp be the
K -basis for KC ∗p which is dual to the basis {σj}j∈Fp for KCp. We

have 〈ei , σj〉 = δi ,j , the Kronecker delta function.

It is well-known that (KCp)∗ is a K -Hopf algebra. Multiplication in
(KCp)∗ is determined by eiej = δi ,j . Thus {ei}i∈Fp is an
orthonormal basis, and e0 + e1 + · · ·+ ep−1 is the multiplicative
identity. The counit is determined by ε(ei ) = δi ,0, comultiplication
is determined by ∆(ei ) =

∑
j∈Fp

ej ⊗ ei−j , and the antipode

satisfies S(ei ) = e−i .



Lemma 2.1. Let ξ1 =
∑p−1

r=1 rer ∈ (KCp)∗. Then
〈ξ1, (σ − 1)j〉 = δ1,j and (RCp)∗ is an R-Hopf algebra with
(RCp)∗ = R[ξ1] where ξp1 = ξ1. The counit map satisfies
ε(ξ1) = 0, comultiplication is given as ∆(ξ1) = ξ1 ⊗ 1 + 1⊗ ξ1,
namely ξ1 is primitive, and the antipode satisfies S(ξ1) = −ξ1.

Proposition 2.2. Let i ≥ 0 be an integer and let β = πiξ1. Then
R[β] is an R-Hopf algebra contained in (RCp)∗ with
βp = π(p−1)iβ; its coalgebra structure is defined by counit
ε(β) = 0, comultiplication ∆(β) = β ⊗ 1 + 1⊗ β, and antipode
S(β) = −β. We have R[β] = H∗i .

Theorem 2.3. [Tate-Oort] Every Hopf order in (KCp)∗ can be
written as R[β] = R[πiξi ] for some i ≥ 0.

Corollary 2.4. Every Hopf order in KCp can be written as Hi for
some i ≥ 0.



3. Hopf orders in (KC 2
p )
∗

Let C 2
p = 〈σ1, σ2〉. Then {σa1σb2}a,b∈Fp is a basis for KC 2

p , with dual

basis {ea,b}a,b∈Fp for (KC 2
p )∗ satisfying 〈ea,b, σc1σd2 〉 = δa,cδb,d .

The dual (KC 2
p )∗ is a K -Hopf algebra. Multiplication in (KC 2

p )∗ is
given by ea,bec,d = δa,cδb,dec,d , hence {ea,b}a,b∈Fp is an
orthonormal basis with

∑
a,b∈Fp

ea,b = 1 ∈ (KC 2
p )∗.

The counit map is determined by ε(ea,b) = δa,0δb,0,
comultiplication is determined by ∆(ea,b) =

∑
i ,j∈Fp

ei ,j ⊗ ea−i ,b−j ,

and the antipode satisfies S(ea,b) = e−a,−b.

We identify (KC 2
p )∗ with (KCp)∗ ⊗ (KCp)∗, ea,b 7→ ea ⊗ eb.



Lemma 3.1. Let ξ1,0 = ξ1 ⊗ 1 and ξ0,1 = 1⊗ ξ1 ∈ (KC 2
p )∗. Then

〈ξ1,0, (σ1 − 1)j(σ2 − 1)k〉 = δ1,jδ0,k ,

〈ξ0,1, (σ1 − 1)j(σ2 − 1)k〉 = δ0,jδ1,k ,

and (RC 2
p )∗ is an R-Hopf algebra with (RC 2

p )∗ = R[ξ1,0, ξ0,1]
where ξ1,0 and ξ0,1 satisfy xp = x . On these generators, the counit
satisfies ε(x) = 0, comultiplication is ∆(x) = x ⊗ 1 + 1⊗ x , and
the antipode satisfies S(x) = −x .

Define ℘(x) = xp − x .



Proposition 3.2. Given integers i1, i2 ≥ 0 and µ ∈ K , let
β1 = πi1(ξ1,0 − µξ0,1) and β2 = πi2ξ0,1.

(i) If vK (℘(µ)) ≥ i2 − pi1, then

R[β1, β2] = R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1]

is an R-Hopf order in (RC 2
p )∗. The algebra structure of R[β1, β2] is

determined by the equations

βp1 = π(p−1)i1β1 − πpi1−i2℘(µ)β2,

and
βp2 = π(p−1)i2β2.

The coalgebra structure of R[β1, β2] is determined on the
generators, βr , r = 1, 2, by counit ε(βr ) = 0, comultiplication
∆(βr ) = βr ⊗ 1 + 1⊗ βr , and antipode S(βr ) = −βr . In
particular, the generators β1, β2 are primitive.



(ii) Let β′1 = πi1(ξ1,0 − µ′ξ0,1) for some µ′ ∈ K satisfying
vK (℘(µ′)) ≥ i2 − pi1. Then R[β′1, β2] is a Hopf algebra, and
R[β′1, β2] = R[β1, β2] if and only if vK (µ′ − µ) ≥ i2 − i1.



On the dual side, we have

Proposition 3.3. Let i1, i2 ≥ 0, µ ∈ K , σ
[µ]
1 =

∑p−1
i=0

(
µ
i

)
(σ1 − 1)i ,

and let

Hi1,i2,µ = R

[
σ1 − 1

πi1
,
σ2σ

[µ]
1 − 1

πi2

]
.

If νK (℘(µ)) ≥ i2 − pi1, then Hi1,i2,µ is a Hopf order in KC 2
p .

Theorem 3.4. Let Hi1,i2,µ be as in Proposition 3.3, then

H∗i1,i2,µ = R[β1, β2] = R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1].



We now show that every Hopf order in (KC 2
p )∗ is of the form

R[β1, β2] = R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1].

Recall C 2
p = 〈σ1, σ2〉, and let H be an R-Hopf order in KC 2

p . Let
C 2
p → C 2

p /〈σ1〉 denote the canonical surjection with
C 2
p /〈σ1〉 ∼= 〈σ̄2〉 where σ̄2 = σ2〈σ1〉. There exists a short exact

sequence

R → Hi1 → H→ Hi2 → R, (1)

where Hi1 = R[(σ1 − 1)/πi1 ] and Hi2 = R[(σ̄2 − 1)/πi2 ], for some
i1, i2 ≥ 0.
We dualize (1) to obtain the short exact sequence

R → H∗i2 → H
∗ → H∗i1 → R. (2)



We next translate into the language of group schemes. Let

D∗i1 = Spec H∗i1 , D∗ = Spec H∗, and D∗i2 = Spec H∗i2 .

Classifying all Hopf orders H in (1), or H∗ in (2), is the same as
classifying all finite group schemes D∗ that fit into the short exact
sequence of group schemes

0→ D∗i1 → D∗ → D∗i2 → 0, (3)

and which are represented by an R-Hopf order in (KC 2
p )∗. In other

words, we compute the subgroup Ext1
gt(D∗i2 ,D

∗
i1

) of generically

trivial extensions within the full extension group Ext1(D∗i2 ,D
∗
i1

).



To this end, observe that the polynomial ring R[x ] with counit
ε(x) = 0, comultiplication ∆(x) = x ⊗ 1 + 1⊗ x and antipode
S(x) = −x represents the additive group scheme Ga.

For i1 ≥ 0, the R-algebra map ψ : R[x ]→ R[x ] determined by
ψ(x) = xp − π(p−1)i1x is a homomorphism of Hopf algebras, and
so, there exists a homomorphism of R-group schemes

Ψ : Ga → Ga,

defined by Ψ(g)(x) = g(ψ(x)) for g ∈ Ga. The kernel of Ψ is
represented by the R-Hopf order R[x ]/(ψ(x)) ∼= H∗i1 in (KCp)∗,
thus there is a short exeact sequence of group schemes

0→ D∗i1
ι→ Ga

Ψ−→ Ga → 0. (4)



From (4), we obtain the long exact sequence:

Hom(D∗i2 ,Ga)
Ψ−→ Hom(D∗i2 ,Ga)

ω→ Ext1(D∗i2 ,D
∗
i1)

ι→ Ext1(D∗i2 ,Ga),

with connecting homomorphism ω, which induces the map ρ in the
exact sequence

0→ coker(Ψ : Hom(D∗i2 ,Ga)

	

)
ρ→ Ext1(D∗i2 ,D

∗
i1)

ι→ Ext1(D∗i2 ,Ga).

Tensoring with K and considering kernels, we obtain the exact
sequence

0→ coker(Ψ : Hom(D∗i2 ,Ga)

	

)gt
ρ→ Ext1

gt(D∗i2 ,D
∗
i1)

ι→ Ext1
gt(D∗i2 ,Ga).

(5)



Proposition 3.5. There is an isomorphism

ρ : coker(Ψ : Hom(D∗i2 ,Ga)

	

)gt → Ext1
gt(D∗i2 ,D

∗
i1).

Proof. Our plan is to show that Ext1
gt(D∗i2 ,Ga) = 0 in (5). To this

end, we use a first quadrant spectral sequence to show that
Ext1(D∗i2 ,Ga) ∼= H2

0(D∗i2 ,Ga). With this characterization, we then
form the complex of morphisms

Mor0((D∗i2)r−1,X)
∂r−1−→ Mor0((D∗i2)r ,X)

∂r−→ Mor0((D∗i2)r+1,X)
∂r+1−→,

and compute directly that

H2
0(D∗i2 ,Ga)→ H2

0(K ⊗R D∗i2 ,K ⊗R Ga)

is an injection, thus H2
0(D∗i2 ,Ga)gt ∼= Ext1

gt(D∗i2 ,Ga) = 0 is trivial.
�



In order to compute the elements of Ext1
gt(D∗i2 ,D

∗
i1

), explicitly, we

need to characterize coker(Ψ1 : Hom(D∗i2 ,Ga) 	)gt .

Proposition 3.6. The coker(Ψ1 : Hom(D∗i2 ,Ga) 	)gt is

isomorphic to the additive subgroup of K/(Fp + P i2−i1)
represented by those elements µ ∈ K satisfying ℘(µ) ∈ P i2−pi1 .

Proof. Each element of Hom(D∗i2 ,Ga) corresponds to a R-Hopf
algebra homomorphism R[x ]→ H∗i2 , and since x is primitive,
elements of Hom(D∗i2 ,Ga) correspond to Prim(H∗i2), the primitive
elements in H∗i2 . We have P = Prim(H∗i2) = Rβ2 where

β2 = πi2ξ0,1.

The generically trivial elements in the cokernel

coker(Ψ1 : Hom(D∗i2 ,Ga) 	) correspond to elements of

(ψ(K ⊗R P) ∩ P)/ψ(P).



Elements of K ⊗R P can be expressed as µπi1ξ0,1 for some µ ∈ K ,
and an element of ψ(K ⊗R P) can be written

℘(µ)πpi1ξ0,1 = ψ(µπi1ξ0,1).

An element of ψ(K ⊗R P) lies in P precisely when ℘(µ) ∈ P i2−pi1 .
It is zero in the quotient (ψ(K ⊗R P) ∩ P)/ψ(P) precisely when
µ ∈ Fp + P i2−i1 . �



Theorem 3.7. Each class [E ] in Ext1
gt(D∗i2 ,D

∗
i1

) corresponds to a
short exact sequence

Eµ : 0→ D∗i1 −→ Spec R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1] −→ D∗i2 → 0

where µ ∈ K represents a coset in K/(Fp + P i2−i1) that satisfies
νK (℘(µ)) ≥ i2 − pi1.

Proof. Let [E ] ∈ Ext1
gt(D∗i2 ,D

∗
i1

),

E : 0→ D∗i1 −→ D∗ −→ D∗i2 → 0.

By Proposition 3.5, ρ−1([E ]) = [h] is a class in the cokernel
represented by a homomorphism h : D∗i2 → Ga and is determined

by a Hopf algebra map x 7→ ℘(µ)πpi1ξ0,1 = ℘(µ)πpi1ξ0,1 for some
µ ∈ K with νK (℘(µ)) ≥ i2 − pi1.



We compute the representing Hopf algebra H∗h of D∗h = D∗.

Translating to Hopf algebras, we have the push-out diagram

H∗h ← R[x ]
↑ ψ ↑
H∗i2

α← R[x ],

with α(x) = ℘(µ)πpi1ξ0,1 = ψ(µπi1ξ0,1). Thus,

H∗h = (R[πi2ξ0,1]⊗R R[x ])/(℘(µ)πpi1ξ0,1 ⊗ 1 + 1⊗ ψ(x))
∼= R[πi2ξ0,1][x ]/(ψ(x) + ℘(µ)πpi1ξ0,1)

= R[πi2ξ0,1][x ]/(ψ(x) + ψ(µπi1ξ0,1))

= R[πi2ξ0,1][x ]/(ψ(x + µπi1ξ0,1)).

With x 7→ πi1ξ1,0, under R[x ]→ R[x ]/ψ(x) ∼= R[πi1ξ1,0], one
obtains

H∗h ∼= R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1].

�



And as we have seen,

Hh
∼= R[πi1(ξ1,0 − µξ0,1), πi2ξ0,1]∗

∼= Hi1,i2,µ

= R

[
σ1 − 1

πi1
,
σ2σ

[µ]
1 − 1

πi2

]
.

Thus every R-Hopf order in KC 2
p is of the form Hi1,i2,µ.



4. Hopf orders in (KC 3
p )
∗

How much of the method of the n = 2 case carries over to n ≥ 3?

Let C 3
p = 〈σ1, σ2, σ3〉, σ̄2 = σ2〈σ1〉, σ̄3 = σ3〈σ1〉, and let

R → R

[
σ1 − 1

πi1

]
→ H→ R

[
σ̄2 − 1

πi2
,
σ̄3σ̄

[µ]
2 − 1

πi3

]
→ R

be a short exact sequence of R-Hopf orders, H ⊆ KC 3
p , dualizing as

R → R[πi2(ξ0,1,0 − µξ0,0,1), πi3ξ0,0,1]→ H∗ → R[πi1ξ1,0,0]→ R,

where ξi ,j ,k = ξi ⊗ ξj ⊗ ξk .



Applying Spec gives

0→ D∗i1 → D∗ → D∗i2,i3,µ → 0, (6)

where

D∗i2,i3,µ = Spec R[πi2(ξ0,1,0 − µξ0,0,1), πi3ξ0,0,1].

Note: D∗i2,i3,µ plays the role of D∗i2 in the n = 2 case.

We want to classify short exact sequences of the form (6). Most of
the results in the n = 2 case extend easily, in fact:

Proposition 4.1. There is an isomorphism

ρ : coker(Ψ : Hom(D∗i2,i3,µ,Ga)

	

)gt → Ext1
gt(D∗i2,i3,µ,D

∗
i1).



So it is a matter of computing coker(Ψ : Hom(D∗i2,i3,µ,Ga) 	)gt .

To this end, we see that elements of Hom(D∗i2,i3,µ,Ga) correspond

to Hopf maps R[x ]→ R[πi2(ξ0,1,0 − µξ0,0,1), πi3ξ0,0,1] given as
x 7→ a, where a ∈ P = Prim(R[πi2(ξ0,1,0 − µξ0,0,1), πi3ξ0,0,1]).

Ultimately, we need to compute

(ψ(K ⊗ P) ∩ P)/ψ(P).

Now, K ⊗ P = Kξ0,1,0 + Kξ0,0,1, and elements of K ⊗ P can be
written

ωπi1ξ0,1,0 + θπi1ξ0,0,1

for ω, θ ∈ K .



Thus an element in ψ(K ⊗ P) is

ψ(ωπi1ξ0,1,0 + θπi1ξ0,0,1) = ℘(ω)πpi1ξ0,1,0 + ℘(θ)πpi1ξ0,0,1.

This element is in P under certain conditions on ℘(ω) and ℘(θ); it
is in ψ(P) under certain conditions on ω and θ.

We determine these conditions.

Note that ℘(ω)πpi1ξ0,1,0 + ℘(θ)πpi1ξ0,0,1 ∈ P if and only if

〈℘(ω)πpi1ξ0,1,0 + ℘(θ)πpi1ξ0,0,1,Hi2,i3,µ〉 ⊆ R.



Since

σ̄3σ̄
[µ]
2 − 1 = (σ̄3 − 1 + 1)σ̄

[µ]
2 − 1

= (σ̄3 − 1)

p−1∑
i=0

(
µ

i

)
(σ̄2 − 1)i +

p−1∑
i=1

(
µ

i

)
(σ̄2 − 1)i

= (σ̄3 − 1)

(
1 +

p−1∑
i=1

(
µ

i

)
(σ̄2 − 1)i

)

+ µ(σ̄2 − 1) +

p−1∑
i=2

(
µ

i

)
(σ̄2 − 1)i

= (σ̄3 − 1) + µ(σ̄2 − 1) +

p−1∑
i=2

(
µ

i

)
(σ̄2 − 1)i

+

p−1∑
i=1

(
µ

i

)
(σ̄3 − 1)(σ̄2 − 1)i ,



It suffices to show that

〈℘(ω)πpi1ξ0,1,0 + ℘(θ)πpi1ξ0,0,1, σ̄2 − 1〉 ∈ πi2R,
and

〈℘(ω)πpi1ξ0,1,0 + ℘(θ)πpi1ξ0,0,1, (σ̄3 − 1) + µ(σ̄2 − 1)〉 ∈ πi3R,

The first condition is

νK (℘(ω)) ≥ i2 − pi1,

and the second condition is

ν(℘(θ) + µ℘(ω)) ≥ i3 − pi1.

Note: if νK (µ) ≤ 0, then νK (µ) ≥ i3
p
− i2. Thus,

νK (µ℘(ω)) ≥ i3
p
− i2 + i2 − pi1 =

i3
p
− pi1,

and so,

ν(℘(θ)) ≥ i3
p
− pi1.



Here is the classification result.

Theorem 4.2. Each class [E ] in Ext1
gt(D∗i2,i3,µ,D

∗
i1

) corresponds to
a short exact sequence

Eω,θ : 0→ D∗i1
−→ Spec R[πi1(ξ1,0,0−ωξ0,1,0−θξ0,0,1), πi2(ξ0,1,0−µξ0,0,1), πi3ξ0,0,1]

−→ D∗i2,i3,µ → 0

where µ, ω, θ ∈ K satisfy

νK (℘(µ)) ≥ i3 − pi2, ν(℘(ω)) ≥ i2 − pi1, νK (℘(θ)) ≥ i3
p
− pi1.



Finally, we have a conjecture.

Conjecture 4.3. The Hopf order

R[πi1(ξ1,0,0 − ωξ0,1,0 − θξ0,0,1), πi2(ξ0,1,0 − µξ0,0,1), πi3ξ0,0,1]

in (KC 3
p )∗ is the linear dual of the Hopf order

R

[
σ1 − 1

πi1
,
σ2σ

[ω]
1 − 1

πi2
,
σ3σ

[θ]
1 (σ2σ

[ω]
1 )[µ] − 1

πi3

]
in KC 3

p .
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