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1. Introduction

Let p be prime, let R be a discrete valuation ring of characteristic
p and quotient field K, with uniformizing parameter 7 and
valuation vk : K — Z. Let C; denote the elementary abelian
group of order p”. Let KCJ be the group ring Hopf algebra with
dual Hopf algebra (KC])*.

This talk concerns the structure of R-Hopf orders in (KCJ)* for

n > 1. The cases n = 1,2 are known; complete classifications have
been given by J. Tate and F. Qort in the case n =1, and G. Elder
and U. in the case n = 2. For n =1, one parameter is required to
determine the Hopf order, and for n = 2 we require three
parameters.



For arbitrary n, A. Koch has recently shown that Hopf orders in
(KCJ) are completely classified using n(n + 1)/2 parameters.

What remains unsettled is the explicit structure of the Hopf orders
in (KC7)* (and their duals in KCJ).

Towards this end, we determine the algebraic structure of all Hopf
orders in (KC,‘:’)* and conjecture about the structure of their duals

in KCS.

We begin with a review of the n = 1,2 cases.



2. Hopf orders in (KC,)*

Let o generate C,. Then it is well-known that the group ring KC,
is a K-Hopf algebra. Let i > 0 be an integer and let

Since (¢ —1)P =0 in KCp, it is easy to see that H; is both closed
under multiplication and a free R-module of rank p. Since
RC, C H;, we clearly have KH; = KC,.

Comultiplication on o is grouplike, therefore, letting
x = (0 —1)/7" we have

AX)=x®@1+1@x+1'x@x € H; @ H,j.

As a result, H; is a Hopf order in KC,.



Let (KCp)* be the linear dual of KCp, and let {e;}icr, be the
K-basis for KC; which is dual to the basis {o/}jer, for KC,. We

have (e;, 0/) = §; j, the Kronecker delta function.

It is well-known that (KC,)* is a K-Hopf algebra. Multiplication in
(KCp)* is determined by eje; = d; ;. Thus {e;}icr, is an
orthonormal basis, and ey + e; + - - - + e,_1 is the multiplicative
identity. The counit is determined by £(e;) = d; 9, comultiplication
is determined by A(ei) =) cp, € ® €—j, and the antipode
satisfies S(ej) = e_;.



Lemma 2.1. Let & = 3P~ re, € (KC,)*. Then

(&1, (0 — 1Y) = 61 and (RC,)* is an R-Hopf algebra with
(RCp)* = R[&1] where €0 = &1, The counit map satisfies

e(&1) = 0, comultiplication is given as A(§1) =& @14+ 1® &,
namely & is primitive, and the antipode satisfies S(§1) = —&1.

Proposition 2.2. Let i > 0 be an integer and let 3 = ©'¢y. Then
R[B] is an R-Hopf algebra contained in (RCp)* with

BP = 7(P=Vig jts coalgebra structure is defined by counit

e(B) =0, comultiplication A(8) = f® 1+ 1® 3, and antipode
S(B) = —pB. We have R[f] = H}

Theorem 2.3. [Tate-Oort| Every Hopf order in (KCp)* can be
written as R[] = R[n'¢;] for some i > 0.

Corollary 2.4. Every Hopf order in KC, can be written as H; for
some i > 0.



3. Hopf orders in (KC))*

Let Cg = (01,02). Then {0305}, ber, is a basis for KCg, with dual
basis {€p}a ber, for (KCg)* satisfying <ea,b,afag) = 02c0bd-

The dual (KC3)* is a K-Hopf algebra. Multiplication in (KC2)* is
given by €a,b€c,d = 5a,c5b,dec,dv hence {ea,b}a,bEFp is an
orthonormal basis with 3, ,cr eap =1 € (KC3)*.

The counit map is determined by £(e, ) = 02,00p.0,
comultiplication is determined by A(e, ) = Zi,jer € j ® € ibj,

and the antipode satisfies S(e, ) = €_5 _p.

We identify (KC2)* with (KCp)* ® (KCp)*, € — €5 © ep.



Lemma 3.1. Let 5170 =& ®1 and 5071 =1®¢& € (KCg)* Then

(€10, (01 — 1Y (02 — 1)K) = 61360 4,

(€01, (01 — 1Y (02 — 1)%) = 8o ;01 4,

and (RC3)* is an R-Hopf algebra with (RC3)* = R[¢1,0, o,1]
where £10 and &o,1 satisfy xP = x. On these generators, the counit
satisfies €(x) = 0, comultiplication is A(x) = x® 14+ 1® x, and
the antipode satisfies S(x) = —x.

Define p(x) = xP — x.



Proposition 3.2. Given integers iy, i» > 0 and pu € K, let
B =7"(&10 — péo1) and B2 = 2o 1.

(i) If v (p(r)) > i — piz, then
R[B1, B2] = R[x" (&1,0 — 1éo1), m™&0,1]

is an R-Hopf order in (RCg)*. The algebra structure of R[f1, B2] is
determined by the equations

B = wPDAg — xPi R o),
and
BE = Tr(p_l)i2ﬁ2,

The coalgebra structure of R[f1, 52] is determined on the
generators, 3,, r = 1,2, by counit €(3,) = 0, comultiplication
A(B,) =B, ®1+1® B,, and antipode S(3,) = —fB,. In
particular, the generators (31, 8> are primitive.



(i) Let B) = w1 (&0 — p'€0,1) for some pi' € K satisfying
vk (p(p')) > i — pir. Then R[B1, B2] is a Hopf algebra, and
R[B1, B2] = R[B1, B2] if and only if vi(p' — p) > i — i1.



On the dual side, we have

Proposition 3.3. Let i1, i > 0, p € K, o) = P71 (¥) (01 — 1)/,
and let

P R

(1]

-1 -1

Hi o = R [01 0207 ] .

If vk(p(p)) > io — pir, then Hj, i, . is a Hopf order in KCg.

Theorem 3.4. Let H; ;, . be as in Proposition 3.3, then

H o = RIB1, B2 = R[T™ (€10 — péo), m™&o1]-



We now show that every Hopf order in (KCg)* is of the form

R[51, Ba] = R[7™ (€10 — 1o.1), &0 1]

Recall Cg = (01,02), and let H be an R-Hopf order in KCg. Let
Cg — C3/<01> denote the canonical surjection with

C3/<01> = (52) where 2 = 02(01). There exists a short exact
sequence

R—Hy —H—Hy— R, (1)

where H; = R[(o01 — 1)/7"] and H;, = R[(52 — 1)/7"], for some
i1,i0 > 0.
We dualize (1) to obtain the short exact sequence

R—H, = H" —H = R. (2)



We next translate into the language of group schemes. Let

D} = Spec H}, D*=Spec 1", and D}, = Spec H;,.
Classifying all Hopf orders  in (1), or H* in (2), is the same as
classifying all finite group schemes D* that fit into the short exact
sequence of group schemes

0 — D} — D*— D}, =0, (3)

and which are represented by an R-Hopf order in (KCg)*. In other

words, we compute the subgroup Ext;,t(]D)}z,ID)}kl

trivial extensions within the full extension group Extl(]D)}k ,D%).
2 n

) of generically



To this end, observe that the polynomial ring R[x] with counit
g(x) = 0, comultiplication A(x) = x® 1+ 1 ® x and antipode
S(x) = —x represents the additive group scheme G,.

For i1 > 0, the R-algebra map ) : R[x] — R[x] determined by
P(x) = xP — 7(P~Nix is a homomorphism of Hopf algebras, and
so, there exists a homomorphism of R-group schemes

V. G, — G,,

defined by W(g)(x) = g(¢(x)) for g € G,. The kernel of ¥ is
represented by the R-Hopf order R[x]/(¢(x)) = H} in (KCp)*,
thus there is a short exeact sequence of group schemes

0—-Df 4G, % G, — 0. (4)



From (4), we obtain the long exact sequence:

Hom(D}, G,) — Hom(D%, G,) < Ext}(Df, D} ) % Ext!(D, G,),

IPX IPX IPX )
with connecting homomorphism w, which induces the map p in the
exact sequence

0 — coker(W : Hom(D%, G,)“ ) & Ext!(Df, Df) % Ext}(D},G,).

i) in? i

Tensoring with K and considering kernels, we obtain the exact
sequence

0 — coker(V : Hom(Dj,

27

G.)?)gr & Extl, (D}, D}) - Extl, (D}, G,
(5)



Proposition 3.5. There is an isomorphism

p : coker(V : Hom(D}, a)O)gt—>Ext +(D7,, D}).

27

Proof. Our plan is to show that Extét(D};, Gz) =0in (5). To this
end, we use a first quadrant spectral sequence to show that

Ext! (D}, G,) = H§(D}, G,). With this characterization, we then
form the complex of morphisms

Moro((DD3)" %, X) %= Morg((D})", X) %5 Moro((D3) 1, %) 274,
and compute directly that

H3(D:, G,) — H3(K ®g D}

7

K ®r Ga)

i

is an injection, thus H3 o(D7, Ga)gr = Ext;,t(ID);‘z, G,) = 0 is trivial.
g



In order to compute the elements of Extét(]D)’f‘ D*), explicitly, we

I’ i

need to characterize coker(W; : Hom(ID*, G,)“ ).

R’

Proposition 3.6. The coker(V; : Hom(D}, G,)“ )t is
isomorphic to the additive subgroup of K /(Fp, + P271)
represented by those elements i € K satisfying p(u) € P27P1.

Proof. Each element of Hom(D},G,) corresponds to a R-Hopf
algebra homomorphism R[x] — H} , and since x is primitive,
elements of Hom(D},, G,) correspond to Prim(#}), the primitive

elements in H; . We have P = Prim(#} ) = R32 where
P2 =72 1.

The generically trivial elements in the cokernel
coker(V¥; : Hom(D};,Ga)O) correspond to elements of

((K ®r P)NP)/¢(P).



Elements of K ®g P can be expressed as um't&p 1 for some p € K,
and an element of ¥(K ®g P) can be written

o(u)mP o1 = Y(pm" o).
An element of /(K ®g P) lies in P precisely when o(u) € P27P1L,

It is zero in the quotient (¢)(K ®@g P) NP)/1(P) precisely when
peF,+ P2i, O



Theorem 3.7. Each class [E] in Exti,t(]D)};, D7 ) corresponds to a
short exact sequence

E,: 0 — D} — Spec R[x" (1,0 — péo), m2601] — Df — 0

where i € K represents a coset in K/(Fp, + P27) that satisfies
vi(p(p)) 2 i2 = pir-
Proof. Let [E] € Exty, (D}, D7),

7
E : 0—>]D)jf‘1—>}D>*—>]D>}*2—>0.

By Proposition 3.5, p~1([E]) = [h] is a class in the cokernel
represented by a homomorphism h: D} — G, and is determined
by a Hopf algebra map x — p(p)mP"&p1 = p(p)mP1 o1 for some
w e K with vk (p(p)) > i — pir.



We compute the representing Hopf algebra H} of D} = D*.

Translating to Hopf algebras, we have the push-out diagram

H; <« R[x]
) (o
M & R[x],

with a(x) = p(p)mPé 1 = P(unéo1). Thus,

Hh (R[r2&0.1] ®r RIX])/(p(1)mP 601 ® 1+ 1@ 1h(x))
Rr&01][x]/(¥(x) + p(u)mP&0.1)
R[x&01][x]/ (1 (x) + ¢ (pm"&01))
R[r?&01][x]/ (¥ (x + pm&o,1)).

1

With x — 7Ti1§1,0. under R[x] = R[x]/v(x) = R[7rl'1§1,0]y one
obtains ) :
Hj, = R (€0 — péo), ™ €0l



And as we have seen,

Hp = R[r™ (€10 — péor), m2&0 1]
Hiyio

_ R[Ul._l aga&”}—l].

12

mh i

Thus every R-Hopf order in KCg is of the form H;, j, .-



4. Hopf orders in (KC})*

How much of the method of the n = 2 case carries over to n > 37

Let CS’ = <01,02,<T3>, 0y = 02<01>, 03 = U3<01>, and let

_ 4 sl
R—)R{Jl.l}—ﬂ{—)R 02.1,0302. 1 —R
h i 3

be a short exact sequence of R-Hopf orders, H C KC3, dualizing as

R — R[72(&.1.0 — 1é001), m*€001] — H* — R[r"¢100] — R,

where & =& ® & @ k.



Applying Spec gives

0 — D; —D* — D} — 0, (6)

127’3)“

where
D} i, . = Spec R[r2(£o0,1.0 — 1é0,0,1), ™ £0,0,1])-

Note: D7 L plays the role of D} in the n = 2 case.

We want to classify short exact sequences of the form (6). Most of
the results in the n = 2 case extend easily, in fact:

Proposition 4.1. There is an isomorphism

p : coker(V : Hom(DD; G.)" )gt — Ext1 (D% D3).

2,03, 2,03,



So it is a matter of computing coker(V : Hom(D? G2)?)gr-

i,i3,p 2

To this end, we see that elements of Hom(ID} G,) correspond

) 2,13,
to HOpf maps R[X] — R[ﬂ"2(§071,0 — /L€07071), ﬂ’3§0’0,1]'given as
x +— a, where a € P = Prim(R[72(€0,1,0 — 1£0,0,1), 72£0,0,1])-

Ultimately, we need to compute

((K @ P)NP)/P(P).

Now, K @ P = K&o,1,0 + K&0,0,1, and elements of K ® P can be
written . .
wr&o,1,0 + 07" &0,0,1

for w,0 € K.



Thus an element in (K @ P) is

Ylwr&o 1,0 + 07 6001) = p(w)TP1E0 1.0 + P(0)TP 00,1

This element is in P under certain conditions on p(w) and p(0); it
is in ¥ (P) under certain conditions on w and 6.

We determine these conditions.
Note that p(w)mP1& 1.0 + ©(0)7P1 01 € P if and only if

(p(w)mPr &0 1,0 + ()P 0,01, Hipsiy ) C R



53 —1 = (F3—14+1)50 -1

>(5)

1
(F3—1))
=0

(63 —1) (

(52 — 1)’ +§ (‘f) (52 — 1)

()

1+
=1

(e

+ (G2 = 1)+ Y

(75— 1)+ (32~ 1) +§:; (") @z -1y

3 ()1



It suffices to show that

(p(w)TP1&010 + p(0)TP&001,52 — 1) € TR,

and
(p(w)rP &0 1,0 + p(0) 7P €001, (53 — 1) + u(52 — 1)) € 7°R,
The first condition is
vk(p(w)) > i — pit,
and the second condition is
v(p(0) + pp(w)) > s — pir.
Note: if vx(p) <0, then vi(p) > Ip3 — ip. Thus,

i . . I .
vk (pp(w)) = ;3 — 2+ — piy = ;3 — pit,

and so,



Here is the classification result.

Theorem 4.2. Each class [E] in Extét(ID)zJa’ .+ D)) corresponds to
a short exact sequence

Ewﬁ 00— ]D)z
— Spec R (€1,0.0—w&0.1.0—0%0.01), T2(€0.1.0—1€0,01), T3E0,0.1]

*

12,03, —0

— D

where p,w, 0 € K satisfy

v(p(n) > s — pia, w(p(w)) > s — pin, uK(@(e))z’;—pa.



Finally, we have a conjecture.
Conjecture 4.3. The Hopf order

R (£1,00 — wéo1,0 — 0€0,01)s 72 (€010 — 11£0,0.1), T3€0,0,1]

in (KC3)* is the linear dual of the Hopf order

R o1 — 1 0.20.5 w] -1 0.30.[ ](0.20_[0-)])[,11,]

) )

7-‘-1'1 7-(-1'2 7'["3

in KCS.
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